A note on vague convergence of measures

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on vague graphs

In this paper, we introduce the notions of product vague graph, balanced product vague graph, irregularity and total irregularity of any irregular vague graphs and some results are presented. Also, density and balanced irregular vague graphs are discussed and some of their properties are established. Finally we give an application of vague digraphs.

متن کامل

a note on vague graphs

in this paper, we introduce the notions of product vague graph, balanced product vague graph, irregularity and total irregularity of any irregular vague graphs and some results are presented. also, density and balanced irregular vague graphs are discussed and some of their properties are established. finally we give an application of vague digraphs.

متن کامل

A note on convergence in fuzzy metric spaces

The sequential $p$-convergence in a fuzzy metric space, in the sense of George and Veeramani, was introduced by D. Mihet as a weaker concept than convergence. Here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. In such a case $M$ is called an $s$-fuzzy metric. If $(N_M,ast)$ is a fuzzy metri...

متن کامل

A Note on Multigrid Convergence

We generalise the abstract V-cycle convergence proof of 20] and 21] to include unsymmetricsmoothing operations as well. In the case of full regularity we obtain better convergence with an increasing number of smoothing steps, thus recovering the results of 2]. Applying our theory to an anisotropic model problem we obtain optimal results in this case as well.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2019

ISSN: 0167-7152

DOI: 10.1016/j.spl.2019.06.004